Section 6.4 Problems

Problem 1. Find all values of α that make the following matrix singular

$$
A=\left(\begin{array}{ccc}
1 & -1 & \alpha \\
2 & 2 & 1 \\
0 & \alpha & -\frac{3}{2}
\end{array}\right)
$$

Problem 2. Prove that $A B$ is nonsingular if and only if both A and B are nonsingular
Problem 3. It turns out that if A depends on a parameter t in a C^{1} way (the components of A are C^{1} functions of t), then $\frac{d}{d t} \log |\operatorname{det} A(t)|=\operatorname{Tr}\left(A^{-1} \frac{d}{d t} A\right)$. Verify this for the matrix:

$$
A(t)=\left(\begin{array}{ll}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right)
$$

Section 6.5 Problems

Problem 4. Solve the linear system of equations:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
3 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-5
\end{array}\right)
$$

Problem 5. Consider the matrix:

$$
A=\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 4 & 0 \\
0 & 1 & -1
\end{array}\right)
$$

Find the permutation matrix P so that $P A$ can be factored into the product $L U$, where L is lower triangular with $1 s$ on its diagonal and U is upper triangular.

Section 6.6 Problems

Problem 6. Determine which of the following matrices are symmetric, singular, strictyl diagonally dominant, positive definite:

1. $\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$
2. $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 3 & 0 \\ 1 & 0 & 4\end{array}\right)$
3. $\left(\begin{array}{ccc}4 & 2 & 6 \\ 3 & 0 & 7 \\ -2 & -1 & -3\end{array}\right)$
4. $\left(\begin{array}{cccc}4 & 0 & 0 & 0 \\ 6 & 7 & 0 & 0 \\ 9 & 11 & 1 & 0 \\ 5 & 4 & 1 & 1\end{array}\right)$
